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HARTMANN EFFECT.

REGION OF EXISTENCE AND OSCILLATION FREQUENCIES

UDC 534.232V. N. Glaznev and Yu. G. Korobeinikov

Data of experiments on determining the region of existence for auto-oscillations (Hartmann effect)
with a frequency of approximately 450 Hz with variation in the distance from the nozzle to the
resonator. Results of these experiments differ from the well-known results of Hartmann and his
followers obtained for shallow resonators. It is shown that the region of auto-oscillations exists for
large distances between the nozzle and the resonator. The results obtained are explained using the
modern knowledge of the gas-dynamic structure of a supersonic underexpanded jet. It is shown that
in determining the frequency of low-frequency oscillations, it suffices to allow for the resonator length
and its “added” mass.

It is known that auto-oscillations that arise when a supersonic underexpanded jet flows into a half-closed
tube (Hartmann effect) exist for a particular range of distances from the nozzle to the resonator l (Fig. 1), called
the nozzle–resonator gap or the tuning parameter of a Hartmann generator [1]. In Fig. 1, xm is the distance from
the nozzle to the Mach disk in the presence of a resonator, h is the depth of the resonator, d1 is the diameter of the
nozzle exit section, d2 is the diameter of the resonator, and dobst is the diameter of the obstacle.

We consider briefly the gas-dynamic and geometrical structure of the jet, which is necessary for analysis
of the results obtained. We denote the off-design parameter of the jet by n = patm/pamb > 1 (patm is the nozzle
exit pressure and pamb is the ambient pressure). A supersonic underexpanded jet has a barrel-shaped quasiperiodic
structure with a typical particular system of shock waves in the first “barrel” (Fig. 2) [2]. The length of the first
“barrel” L is defined by the empirical formula [3]

L/r1 = 1.72Matm
√
γ n, (1)

where Matm is the Mach number at the nozzle exit section, r1 is the nozzle radius, and γ is the adiabatic exponent.
According to [4], the distance from the nozzle exit to the Mach disk (direct shock) in the free jet is xsh = 0.8L
(Fig. 2). The position of the jet cross section of maximum diameter is defined by the coordinate xmax, which is
equal to [5]

xmax = 0.8xsh = 0.64L. (2)

The flow in the second and subsequent “barrels,” whose lengths decrease monotonically only slightly compared to
the length of the first “barrel,” is characterized by the presence of regularly interacting oblique shock waves. The
point of intersection of these waves is located on the jet axis (in the middle of the “barrel), i.e., in the second and
subsequent “barrels: xmax = 0.5L.

The resonator is a semiopen tube (we shall consider only an axisymmetric jet and a cylindrical resonator)
which presents its open end to the nozzle and is aligned with it (see Fig. 1). It is known that the resonator placed
in the jet “works” as a one-dimensional waveguide for h � d2 (see Fig. 1) or as a concentrated vibratory system
(Helmholtz resonator) for d2 ∼ h. Therefore, one can treat the incident jet as a source of vibrational energy in
a one-dimensional approximation, i.e., take into account only the axial distribution of gas-dynamic characteristics
averaged over the jet cross section. Averaging is performed by the rule of [6] with allowance for conservation of
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Fig. 1

Fig. 2

energy and momentum in the real and averaged flows. As a one-dimensional gas-dynamic object, the jet with
specified Matm, n, γ, and stagnation temperature T0 is characterized by the axial distribution of the Mach number
averaged over the cross section M(x) (dashed curve in Fig. 2). An analysis of the known properties of supersonic
flows and the barrel-shaped jet boundary shows that in the first “barrel” of the jet, M(x) increases to the coordinate
xmax, which is determined from Eqs. (1) and (2) and then decreases. For the second and subsequent “barrels,” the
same dependence holds but xmax ≈ 0.5L. According to this, the distribution of the cross-section-average stagnation
pressure past the normal shock p′0(x) (i.e., the pressure measured at the resonator bottom) is shown qualitatively
in Fig. 2 (solid curve). When the resonator is placed in the jet at a distance l < L from the nozzle (see Fig. 1), the
system of shock waves, consisting of a Mach disk and a reflected oblique shock, typical of the free jet, moves to the
nozzle and takes the new position xm, as in the case of a bluff solid body placed in a homogeneous supersonic flow
(similarly to a detached shock).

In [1] and early studies of the region of existence of auto-oscillation, it was assumed that the gas-dynamic
structure of the entire jet beginning with the first “barrel” is similar to that shown in Fig. 2 for the second “barrel”
(see [1, p. 12]). The static pressure along the jet axis was similar to the curve of p′0(x) for the second “barrel” given
in Fig. 2. It was argued that auto-oscillations exist in the region of 0.5L < l < L. The displacement of the system
of shock waves typical of the free jet toward the nozzle with placement of the resonator in the jet was ignored.

Some properties of auto-oscillations were studied in [6–9]. Thus, Ugryumov [6] determined experimentally
the regions of various flow regimes, gave empirical formulas for calculating the beginning and end of the region of
intense pulsations for particular geometrical ratios (resonator diameter is equal to nozzle diameter), and analyzed
the shock-wave pattern of the flow. As follows from the given oscillogram of the mean flow pressure for Matm = 2
and n = 2.5, the first region of pulsations is in the range of 0.8L 6 l 6 1.76L (the beginning of pulsations is
conditionally determined by the position of the Mach disk in the first “barrel” of the free jet).
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TABLE 1

Matm n d1, mm dobst/d1 A B
lmin/L lmax/L

calculation experiment calculation experiment

1.0 2.1 10 1.8 1.71 2.30 0.75 0.83 1.19 1.53

1.0 2.1 13 1.92 1.69 2.27 0.75 0.91 1.18 1.41

1.0 2.1 17 1.47 1.78 2.39 0.72 0.98 1.19 1.39

2.0 1.5 40 1.0 1.92 2.56 0.70 0.64 1.20 1.24

From [7, p. 59, Fig. 1] it follows that for Matm = 2, n = 3, h/r1 = 2, and d2/d1 = 2, the region of auto-
oscillations is in the range of 0.6L < l < 1.5L. Kuptsov et al. [8] studied auto-oscillations for deep cavities for
Matm = 3.2–4.0, d2/d1 = 0.5–2.0, and h/d1 = 9–76. In [8], it is argued that the extent of auto-oscillation regions
coincides with the length of “barrels” in a supersonic jet but it is difficult to obtain numerical values because
the nondimensional parameter (distance from the nozzle to the resonator) is not determined. Semiletinko and
Uskov [9] obtained empirical formulas for the frequency and amplitude of pressure oscillations in a cavity for jets
with parameters Matm = 2.0–3.6 and n = 0.5–2.0 and various cavities with d2/d1 = 1–2 and h/d2 = 0–10. For
Matm = 3.6, n = 1, and d2/d1 = 1, the region of existence of auto-oscillations is in the range of 0.5L 6 l 6 1.3L.

In the present work, results are obtained for Matm = 1 and values of n > 1 typical for the jets used for sound
generation by means of the Hartmann effect. A formula is proposed for an oscillation frequency that gives a better
fit to experiment than that obtained in [9]. A theoretical explanation is given for the experimentally determined
range of existence of auto-oscillations.

In formulating a criterion for determining the region of existence of auto-oscillations, we are based on the
same hypothesis as the authors of the papers cited above but we introduce two more assumptions.

Assumption 1. With continuous increase in l within the first “barrel” of the jet, auto-oscillations arise when
xm reaches the maximum point on the curve p′0(x) (see Fig. 2). With further increase in the distance from the
nozzle to the resonator, the Mach disk and the reflected shock are in the region with a positive pressure gradient p′0,
i.e., in the region of jet instability.

Assumption 2. In the first “barrel,” xmax 6= 0.5L and is calculated from formula (2).
Under these assumptions, we lay down a rule for calculation of the minimum distance lmin from the nozzle

to the resonator at which auto-oscillations begin. We base on the well-known experimental results of [10] for the
interaction of a supersonic underexpanded jet with a flat plate (obstacle) placed perpendicular to the jet axis.

According to [10], when the obstacle is placed in the first “barrel” of the jet, the distance from the nozzle to
the Mach disk xm is calculated from the formula

xm/xsh = 1−A exp(−Bl/xsh). (3)

For an obstacle of large diameter (dobst � d1, where d1 = 2r1), Semiletinko and Uskov [10] propose values of
A = 1.13 and B = 1.36. For small dobst > d1, formula (3) remains valid [11] but the values of A and B depend on
the ratio dobst/d1.

Identifying the open end of the resonator tube with a flat rigid plate, assuming that xm = xmax in (3), and
taking into account (2), we obtain

lmin

L
=

1
B

xsh

L
ln

A

1− xmax/xsh
=

0.8
B

ln 5A. (4)

To determine the values of lmin and the validity of formula (4), we performed experiments for various gas-
dynamic and geometrical characteristics of a Hartmann generator. The experiments were performed in a 2 m long
channel whose cross section was a square 200 mm on side. A plane traveling wave propagated in the channel from
the source of sound to the channel exit section. The frequency and intensity of the sound were determined by an
LKh-610 piezoelectric transducer, an S5-3 spectrum analyzer, and an oscillograph. The walls of the resonator were
2 and 2.5 mm thick. Table 1 gives gas-dynamic and geometrical characteristics of a Hartmann generator calculated
from formula (4) and experimental values of lmin/L (the data in the last row are taken from [12]).
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Fig. 3

An analysis of the experimental results shows the following:
— for the indicated gas-dynamic and geometrical parameters, the system of shock waves ahead of the

resonator leads to a considerable increase in lmin compared to the data of [1];
— formula (4) can be used to estimate lmin.
The upper bound of the region of existence of auto-oscillations is denoted by lmax. According to (3), for

l = L (boundary of the first and second “barrels” of the jet), we have xm/xsh < 1, i.e., the system of shock waves
in the first “barrel” of the jet is displaced toward the nozzle compared to its position in the free jet. According to
Assumption 1 formulated above, auto-oscillations exist for l = L. Hence, unlike in [1], lmax > L.

We take into account that for x = L (see Fig. 2), the flow is similar to the flow in the nozzle exit section
but with a smaller value of the total pressure p′0, which is due to losses in the system of shock waves. When the
resonator moves into the region x > L, a system of shock waves forms ahead of the resonator again because the flow
here is supersonic. The configuration of this system is similar to the configuration for the first “barrel” of the jet
because the transverse distribution of gas-dynamic parameters is similar to their distribution in the first “barrel.”

Taking into account that the flow is stationary (auto-oscillations cease) when the indicated system of shock
waves is located on the descending branch of the curve of p′0(x) of the second “barrel” (L < l < 1.5L), we obtain the
position of the resonator at which this occurs. Only the smallest theoretical value of lmax can be obtained by simple
means. We assume that the system of shock waves ahead of the resonator is in the section x = L and determine
the corresponding position of the resonator. For this, in formula (3), it suffices to set xm = 0 and calculate the
values of ∆l for known A, B, and xsh. We obtain lmax = L + ∆l. This is the lower bound of lmax, and its real
values are somewhat larger. Values of lmax measured in experiments and calculated by the above-mentioned rule
are presented in Table 1.

From the above results it follows that for Matm = 1, auto-oscillations exist in the range of L < l < 1.5L for
the first “barrel” of the jet and in the range of 2L < l < 2.5L for the second barrel. Figure 3 shows the dependence
of sound intensity J on the distance l/L for the data given in the second row of Table 1.

In determining the oscillation frequency, Borisov [1], working with short resonators (d2 ∼ h), allowed for
the distance between the resonator and the detached shock wave, including it in the resonator length. It can be
stated a priori that for h � d2, this is not required. In this case, the frequency f should be calculated from the
well-known formula of acoustics

f =
c

4(h+ 0.3d2)
. (5)

The frequencies calculated from formula (5) (velocity of sound c = 340 m/sec and h = 170 mm) for d2 = 14
and 20 mm are equal to 485 and 479 Hz, respectively. For the same values of c, h, and d2 = 14 mm, the experimental
value of the frequency is equal to 455 Hz, and for d2 = 20 mm, experiments give values of 450 and 440 Hz. The
calculated data are in good agreement with experiment. The experimental values are slightly smaller than the
calculated data because the latter are obtained on the basis of linear acoustics, and in the experiment, only intense,
substantially nonlinear oscillations were studied.
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